Trivial Graph Format (TGF) is a simple text-based file format for describing graphs. It consists of a list of node definitions, which map node IDs to labels, followed by a list of edges, which specify node pairs and an optional edge label. Node IDs can be arbitrary identifiers, whereas labels for both nodes and edges are plain strings.
The graph may be interpreted as a directed or undirected graph. For directed graphs, to specify the concept of bi-directionality in an edge, one may either specify two edges (forward and back) or differentiate the edge by means of a label. For more powerful specification of graphs, see the other graph file formats below.
A simple graph with 2 nodes and 1 edge might look like this:
The # sign marks the end of the node list and the start of the edge list.
Transforming growth factor beta 1 or TGF-β1 is a polypeptide member of the transforming growth factor beta superfamily of cytokines. It is a secreted protein that performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation and apoptosis. In humans, TGF-β1 is encoded by the TGFB1 gene.
TGF-β is a multifunctional set of peptides that controls proliferation, differentiation, and other functions in many cell types. TGF-β acts synergistically with TGFA in inducing transformation. It also acts as a negative autocrine growth factor. Dysregulation of TGF-β activation and signaling may result in apoptosis. Many cells synthesize TGF-β and almost all of them have specific receptors for this peptide. TGF-β1, TGF-β2, and TGF-β3 all function through the same receptor signaling systems.
TGF-β1 was first identified in human platelets as a protein with a molecular mass of 25 kilodaltons with a potential role in wound healing. It was later characterized as a large protein precursor (containing 390 amino acids) that was proteolytically processed to produce a mature peptide of 112 amino acids.
Transforming growth factor-beta 2 (TGF-β2) is a secreted protein known as a cytokine that performs many cellular functions and has a vital role during embryonic development (alternative names: Glioblastoma-derived T-cell suppressor factor, G-TSF, BSC-1 cell growth inhibitor, Polyergin, Cetermin). It is an extracellular glycosylated protein. It is known to suppress the effects of interleukin dependent T-cell tumors. There are two named isoforms of this protein, created by alternative splicing of the same gene.